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ABSTRACT

We give a characterization of algebraic functions over a field of positive characteristic and we then
deduce that the Hadamard product of two algebraic series in several commutative variables over a field of
positive characteristic is again algebraic.

1. Introduction

Several authors (for example, Hurwitz, Jungen, Schutzenberger, Furstenberg,
Benzaghou, Fliess, Christol, etc.) have considered the Hadamard product (see Section
2 below for terminology) of two formal power series over a field, but the majority
have considered this product with only one variable. We are interested in this product
for several commutative variables and prove the following theorem.

The Hadamard product of two algebraic formal power series in several commutative
variables over a field of positive characteristic is an algebraic formal power series.

Furstenberg [4] showed that over a finite field the Hadamard product of two
algebraic series in one variable is again algebraic and this result was extended first to
a perfect field of positive characteristic by Fliess [3] and then to an arbitrary field of
positive characteristic by Deligne [2].

As Furstenberg [4] remarked, this result is false over a field of characteristic zero.
On the other hand over any field the Hadamard product of two rational formal power
series in one variable is again a rational formal power series (this is easily seen in
positive characteristic and was observed by Jungen [5] in characteristic zero). The
corresponding result does not hold for several variables for any field (see Remark 2
in Section 7).

We introduce a splitting process for functions (in Section 3) and define associated
semilinear operators on the field of fractions of the ring of formal power series which
are multiplicative with respect to the Hadamard product. We use such operators for
characterizing algebraic functions as a generalization of Christol's [1] argument for
one variable.

In Section 6 we prove our main theorem for a perfect field and then we remove
this restriction. Finally we deduce Deligne's theorem, as an easy consequence of our
main theorem.
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2. Notation and terminology

Let K be a field; K[[xv x 2 , . . . , xk]] will denote the ring of formal power series in k
commuting variables xvx2,...,xk with coefficients in K, that i s , / eK[[x l t x 2 , . . . , x k ] ]
if

/= E v-«,W"'*
j-1,2 *

where anrti n/ceK. We shall write K((xltx2,...,xk)) for the field of fractions of
*[[*!, * 2 , ! . ! ,xJ ] .

An element /G^( (X 1 S X 2 , . . . , x f c ) ) is said to be an algebraic function over K if
/ is algebraic over the field of rational functions K(xvx2,...,xk). If, further,
/ e #[[JC15 x2, . . . , xk]], then / is said to be an algebraic series over K. Thus in our
terminology (x1 + x2 + ... + xk)*, k ^ 1, is not an algebraic function, because it does
not lie in K((xx,x2,...,xk)). On the other hand

//ix + WaVHa + ziaVwa + nA „ „ B r /1 .2 „ ,_i/ — \ I l II II I r i vr t2 r 3 ^ l i l v Y r ) 4r r r I sJ— l_t \ n ) \ ) \ / 1 2 -*3 U1 A l A2 ^3/ ^-*lA2A3J

is an algebraic series with respect to any field (see [6, p. 143]).
Let i be a non-negative vector, that is, i = (nvn2,...,nk), where « ; eN,

j = 1,2,..., k. Then X1 will denote the monomial JC"*x2«... xk
k. We denote by A the set

of all non-negative vectors, and by Ap the set Z*, where Zp = {0,1,2, ...,p— 1}.
Throughout this paper we shall denote the ring A [̂[x15 ;t2,..., xk]] by £[[X]], the

field of fractions of K[[X\] by K((X)), the field of rational functions K(xlt x2,..., xk) by
K(X) and the ring of polynomials K[xltx2,...,xk] by K\X\.

From now on K denotes a perfect field of characteristic p > 0, unless explicitly
stated otherwise.

DEFINITION 2.1. Suppose that f,geK[\X]], say

The Hadamard product o f / a n d g, which will be denoted by f*g, is the series
which is defined by

3. The splitting process

In this section we prove a fundamental lemma.

LEMMA 3.1. IfJ{X)eK[\X\] (respectively K((X))), then f can be written uniquely as

/= E xi/r
/or somefxeK[\X\] (respectively K((X))).

Proof. Case 1, in which f(X) e K[[X]]. Suppose that
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T h e n

f= E v.x"+l=E
isAp.teA ieAp VteA

Now put
/, = E <+,*'• (3.i.i)

teA

The uniqueness part follows directly from equating coefficients.

Case 2, in which J[X)eK((X)). Suppose tha t /= a/0 for some <x,PeK[\X]]- Then
at./P = aipp-1/pp. Since aip"-1 e K[\X]], by case (1) there exist dxsK[\X]] such that
a^"1 = L A X 1 ^ . Hence

p p" X
where dJfteK{(X)). The uniqueness part follows easily from case 1 on clearing
denominators.

4. The E operators

In this section we define some operators on the field K((X)) which have some very
nice properties.

For i e Ap define
Ex:K((X)y *K((X))

by
= /,- (4.0.1)

Now for fe A (̂(X)), by Lemma 3.1 we have (with the notation of Lemma 3.1)

/ = E X'(£,(/))p. (4.0.2)

LEMMA 4.1. (i) Et is semilinear over K; that is, iff,geK((X)) and XsK, then

(a) El<J+g) = El(J) + El(g);
(b) EXXf) = WEJJ).

(ii) IffgeK((X)), then E^f) = gEjJ) for each is \p.

Proof. In each case the result follows easily from (4.0.2) and Lemma 3.1.

LEMMA 4.2. For ieAp ifpe\ with p = px + a, treAp, teA, then

Proof. The proof follows immediately by definition of Et and Lemma 4.1 (ii).

LEMMA 4.3. IffgeK[\X]], then for ieAp,

El(J*g) = El{f)*Ex(g).

Proof. The result follows directly from the definitions 2.1, (3.1.1) and (4.0.1).
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5. A characterization of algebraic functions

In this section we generalize Christol's [1] one-variable argument from a finite field
to a perfect field to show that the Hadamard product of two algebraic series in several
variables over a perfect field of characteristic p > 0 is again algebraic.

Let Q be the semigroup generated by the identity operator and the El for i e Ap,
with ordinary composition as multiplication.

To each fe K((X)) we associate its orbit

Then we have the following.

LEMMA 5.1. Suppose that fe K((X)). Then <Q(/)>, the K-linear space spanned by
Cl(f), is the smallest K-subspace ofK((X)) containing f and which is invariant under each
£„ ieAp.

Proof Now <&(/)> is a .K-subspace of K((X)) which contains/and is invariant
under each Ex by definition of Q(/) and Lemma 4.1 (i). Every A -̂subspace V of
K((X)) which contains/and is invariant under each Ex clearly also contains fi(/) and
so the result follows easily.

LEMMA 5.2. IffeK((X)) is an algebraic function over K, then there exist elements
ao,av...,aN in K\X] such that

0

where a0 # 0.

Proof. Since/is algebraic over K(X), the vector space generated by/p" , neN, has
finite dimension over K(X). Hence there exist elements a0,a1,...,aN in K\X] (after
clearing the denominators) not all zero such that

!></*'= o.

We want to show that we may arrange that a0 ^ 0. Lety be the least natural number
such that there is a relation of the preceding type with aj ^ 0. We shall show that
j = 0. Suppose that j > 0. Since ateK\X], by (4.0.2) we have

«,= E^W- (5-2.1)
ieAp

Further, a^O and so there exists an integer vector i such that E^a^ # 0.
Applying Ex to Xwfl</P< = 0 anc* using Lemma 4.1 we obtain

This is a relation of the preceding type where the coefficient of fv ' is different from
zero, and this contradicts the choice of/ Hence j = 0 and thus we may arrange that
a0 # 0 as required.
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THEOREM 5.3. Let fe K((X)). Then f is an algebraic function over K if and only if
there exists a finite-dimensional K-subspace V of K((X)) such that

(ii)

Proof. (Necessity) By Lemma 5.2 there exist elements ao,ax,...,aN in K\X] such
that N

i-0

where aQ # 0. Suppose that g =f/a0. Then

£ = |>y, (5.3.1)

where bf = -ata^-2eK\X].
Suppose that X = sup (deg aQ, deg bt,i= \,2,...,N) where deg means the maxi-

mum degree with respect to each component of X, and let

V = \heK((X)y.h = ZJcig*i,cieK\X],

Then V is a finite-dimensional A>subspace of K((X)). S ince /= aog and dega0 ^ X it
follows t h a t / e V. It remains to show that V is invariant under each Ex for l e Ap.

Let he V, h = ££.o
ci£P<- T n e n

by (5.3.1) and Lemma 4.1. Since deg (c0 bt + ct) ^ 2X, by using Lemma 4.2
degJE^Co^ + q) ^ 2A//? ^ X. Thus £,(/i)eK

(Sufficiency) Suppose that there exists a finite-dimensional AT-subspace VofK((X))
which contains / and is invariant under each Ex. Let n = dimK V and suppose that
Vx is the vector space generated by V over K(X) and V% is the vector space generated
by {gp}, gtVx over K(X). Then clearly dimK(X) Vx ̂  «. We shall show that Vx = V2.

If {a15 a2,..., a j is a basis for Kx over A (̂X) then for every geVx we have

g=Lci^ cteK(X).
i-i

Therefore

i-l

which shows that {af, af,..., <xf} is a system of generators of V2. Thus

diniK(X) ^2 < dimK ( X ) ^ ^ n.

On the other hand, for every ge V by (4.0.2) we have

* = E X'(£,
i6A

Now

Therefore K £ K2 and so Vx £ K2 and thus Vx = V2.
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Suppose now that B is a basis for V over K and let L = {X: B ~* N | X is not
identically zero}. Let G be the vector space over K(X) generated by

for XeL.
geB

As fe V, we can w r i t e / = YJ-iai8i> where ateK and gteB, i= 1,2, ...,n. Hence
/ G ( ? . By the binomial theorem clearly also fmeG, for meN.

If dimK(X)G < oo, t h e n / / 2 , / 3 , . . . , / " will be linearly dependent over Af(X) for a
suitable positive integer N. Hence there exist elements cv c2,...,cN in K(X) not all zero
such that ^ j l i ct/* = 0. Thus/is algebraic over K(X). Hence it is enough to show that
the dimension of G over K(X) is finite.

Suppose that geB^ V <=, Vv Sog p e V2. As Vx = V2, g
ve Vx is a linear combination

of the elements of the basis B (of V over K) with coefficients in #(X). Continuing this
process it follows easily that G is generated by the rLes^"* (where XeL with each
X(g) < p) over K(X). Hence dimK(X) G < pn— 1.

COROLLARY 5.4. Suppose that fe K((X)). Then f is an algebraic function over K if
and only //dimK<£2(/)> is finite.

Proof. (Necessity) I f / i s an algebraic function over K, then by Theorem 5.3 there
exists a finite-dimensional A^-subspace V of K((X)) such that fe V and Kis invariant
under each Ex for ieA p . By Lemma 5.1 <O(/)> £ K and hence dimK<Q(/)> is
finite.

(Sufficiency) By Theorem 5.3 it is enough to take V =

REMARK 1. Suppose that feK[\X)Y, then <fi(/)> ^ #[[X]]. Hence if / is an
algebraic function over K, then by Corollary 5.4 <O(/)> is a finite-dimensional K-
subspace of K[\X]] (and not just of A (̂(X))) which contains/and is invariant under each
E. for

COROLLARY 5.5. Suppose thatf geAT[[X]]. Iff, g are algebraic series over K, then
f* g is again an algebraic series over K.

Proof. Since/and g are algebraic series over K, by Corollary 5.4 and Remark 1
there exist finite-dimensional AT-subspaces Vf and Vg of K[\X]], such t h a t / e Vf, ge Vg

and Vf, Vg are invariant under each Ex for l e Ap. Suppose that Vf = <<xt: 1 ̂  t ^ n)
and Vg = <&: 1 ̂  ^ ̂  m>. Define ^ * Kff = <at *)9S: 1 ̂  r ^ n, 1 ̂  J ^ m>. Then ^ * Fff

is a finite-dimensional AT-subspace of K[[X]] which we shall show satisfies the
required conditions; that is,

(i) f*geVf*Vg,
(ii)

From the AT-bilinearity of the Hadamard product *, we get (i). To establish (ii)
suppose that htVf*Vg and so
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where Xtg e K. For each i e Ap

s- l t-1 s-1 (-1

by Lemmas 4.1 and 4.3.
Since £,(at) e ^ and £,0?,) e V9 for 1 ̂  f ^ n, 1 ̂  j ^ m, it follows from part (i)

that

and hence
Eg(h)eVf*Vg.

Thus f*g is an algebraic series over K (by Theorem 5.3).

6. The proof of the main theorem

In the previous section we showed that over a perfect field of characteristic p > 0,
the Hadamard product of two algebraic series in k variables is again an algebraic
series; that is, we have proved the main theorem with the additional assumption that
K is perfect. The next result enables us to remove this restriction.

THEOREM 6.1. Suppose that Kis any field. IfheK((X)) is an algebraic function over
L, where L is an extension field of K, then h is an algebraic function over K.

Proof. Since h is algebraic over L(X) there exist at, i = 0 ,1,2, . . . ,n , elements of
L[X] (after clearing the denominators) not all zero such that

(6.1.1)
i -0

where n is the degree of h over L(X). For each j = 0,1,2, . . . , n, at= X i ^ X ' (finite
sum) and from above there exists some coefficient bjfteL which is non-zero.

Let bjf> be the first element of a basis B for L over K. Define a AMinear map
(j>: L-+ K such that if x e B then

[0 otherwise.

Hence, if we denote <f>(x) by x, then from (6.1.1) we get

i-0

where the finite sum

is a non-zero element of K[X] for some t, by the choice of 0. Thus h is an algebraic
function over K.

We are now in a position to prove the main theorem.

THEOREM. If K is afield of characteristic p > 0 and iff, g are algebraic series over
K, then f* g is again an algebraic series over K.
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Proof. Suppose that L is a perfect extension of K, for example, the algebraic
closure of K. Then / and g are algebraic series over L. Hence by Corollary 5.5,
/ • g is an algebraic series over L and so by Theorem 6.1 / * g is an algebraic series
over K.

7. A theorem of Deligne

Deligne's theorem [2] can be proved directly from the main theorem.

THEOREM 7.1. Suppose that K is afield of characteristic p>0. IffeK[[X\] and
f= Y^eAaa^" *s an algebraic series in X over K, then / ( / ) = I ] n > o

a n . i f n ^ an

algebraic series in t over K.

Proof. Since

g= £ (xix2...xk)
n =

»^o ' x1x2... xk

is an algebraic (in fact rational) series over K it follows that

h=f*g= Ln>oflnn...»(*i*2 •••**)"

is an algebraic series in X over K by the main theorem.
Let t = x1x2...xlc. We want to show that h is an algebraic series in / over K.

Suppose that N is the degree of h over ^(X). Since

= K(xx x2 ... xk, x2,..., xk) = K(t, x2,..., xfc),

h is algebraic over K(t,x2,x3,...,xk), and so it follows that for 0 ^ i ^ N there exist
b{(t, x2, x3 , . . . , xk) in K[t, x2, x3,..., xk] (after clearing the denominators), not all zero,
such that N

lx2,x,,...,xk)h
i = 0. (7.1.1)

Since the left-hand side of (7.1.1) can be regarded as a polynomial in x2,x3,...,xk

with coefficients in K[[t]] (in fact, with coefficients of the form of polynomial
expressions in h with coefficients in K[t]), and since not all the bt are zero, equating
the coefficients of the various monomials in x2,x3,...,xk to zero yields at least one
non-trivial equation for h of the desired form. Hence h is an algebraic series in /
over K.

Deligne [2] raises some questions concerning the estimation of the degree of / ( / )
over K{t) at the end of his paper. His estimates are based on his deep geometric
interpretation of the main theorem.

It would be interesting to obtain similar estimates for the degrees of the
Hadamard products which are considered in this paper but it is not clear how to
obtain such sharp estimates using the algebraic methods developed here.

REMARK 2. It follows from the main theorem that the Hadamard product of two
rational series in k variables over afield of positive characteristic is algebraic.

Jungen [5] showed that over a field of characteristic zero the Hadamard product
of two rational series in one variable is again a rational series. This result is also true
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in a field of positive characteristic. However, this is not true in more than one variable
over any field as the following example shows. If

«,m>oV n I \-x-y
which is rational, then

and this is not rational.

Note. Recently Lipshitz has informed us that he and Denef have obtained related
results to those in this paper. (These have now appeared in the Journal of Number
Theory 26 (1987) 46-67.)
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